Answer:
The magnitude of the acceleration of a proton at a distance of 1.5cm from the bead is 5.6 x10^13m/s².
The magnitude of the acceleration of a proton at a distance of 1.5cm from the bead is 9.8 x10^16m/s².
Explanation:
Newton's second law states that the total sum of the force acting on a particle in motion is equal to the mass of the particle times the acceleration due to the force. So the electric force between the bead and proton is equal to ma. That is,
Fe = kq1*q2/r² = m*a
The proton had a charge of +1.6x10^-19C and a mass of 1.67×10^-27kg
By substituting these values into the equivalent for a we have that the acceleration of the proton at a distance of 1.5cm form the bead is 5.6×10^13m/s²
The proton had a charge of -1.6x10^-19C and a mass of 9.10×10^-31kg
By substituting these values into the equivalent for a we have that the acceleration of the proton at a distance of 1.5cm form the bead is 9.8×10^16m/s²
Answer:it’s A. right for ape x
Explanation:
Answer:
1.5 kgms⁻¹
Explanation:
Momentum can be defined as "<em>mass in motion</em>."
The amount of momentum that an object has is dependent upon two factors
- mass of the moving object
when there is a change in the velocity , it creates a change in momentum also
when we consider that we can mathematically show this,In terms of an equation,
Change in momentum (ΔΡ) = m(Δv)
where (Δv) - change in velocity
<em>(Δv) = final velocity - initial velocity</em>
Change in momentum (ΔΡ) = m(Δv)
= 0.1×([55-40])
= 1.5 kgms⁻¹
Answer:
<h3>The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. ... 1N=1kg ⋅m/s2. 1 N = 1 kg · m/s 2 . ... The gravitational force on a mass is its weight. ... </h3>
Explanation:
<h3>ILY:)</h3>
1)Food is crushed and ground in the mouth by teeth
2)Chewed food is pushed into the pharynx
3)Food enters the esophagus
4)Food passes through a valve and into the stomach
5)Food is broken down by pancreatic enzymes and absorbed by the small intestine
6)Undigested material is pushed into the large intestine
7)Waste material is compressed in the rectum and eliminated through the anus