Photovoltaic cells are the most efficient means of converting solar energy to electricity. Option b is correct.
<h3>What is a cell?</h3>
A cell is a voltage and current-producing device that consists of a single anode and cathode separated by an electrolyte.
One or more cells can make up a battery. One cell, for example, is one AA battery.
Light intensity on a solar cell is often measured in "suns," with one sun roughly equivalent to 1 kW/m².
Concentrated sunlight improves the ratio of current generated while the device is lighted vs when it is dark, hence enhancing output voltage and efficiency.
Photovoltaic cells are the most efficient means of converting solar energy to electricity.
Hence, option b is correct.
To learn more about the cell refer to:
brainly.com/question/3142913
#SPJ1
<span>b. less climatic variation between the summer and winter seasons in the middle and high latitudes
As the tilt becomes higher (approaches 24 degrees) there is greater variation between the summer and winter months, due to the fact that the tilt toward the sun in the summer and away from the sun in the winter are more pronounced. </span>
The coefficient of static friction is 0.234.
Answer:
Explanation:
Frictional force is equal to the product of coefficient of friction and normal force acting on any object.
So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.
Normal force = mass * acceleration due to gravity
Normal force = 2 * 9.8 = 19.6 N.
And the frictional force is given as 4.6 N, then

Coefficient of static friction = 4.6 N / 19.6 N = 0.234
So the coefficient of static friction is 0.234.
Your experiment should keep one thing constant and measure the other. So vary the temp and measure the pressure. You will get a set of data that relates pressure with temp.
<span>PV = nRT
So
P and T are directly proportional.
</span>These experiments are one of either Boyle-Mariottte's, Gay-Lussac'a or Charles' law.
Explanation:
The given data is as follows.
height (h) = 98.0 m, speed (v) = 73.0 m/s,
Formula of height in vertical direction is as follows.
h =
,
or, t =
Now, formula for the required distance (d) is as follows.
d = vt
=
=
= 326.5 m
Thus, we can conclude that 326.5 m is the horizontal distance from the target from where should the pilot release the canister.