Answer:
a. Microwaves—3 and infrared waves—1
Explanation:
Microwaves and infrared waves are both part of the electromagnetic spectrum, but they have different frequency and wavelength.
In particular:
- Microwaves are long-wavelength electromagnetic waves, with wavelength between 1 mm and 1 m. Their wavelength is longer than visible light
- Infrared waves are also long-wavelength electromagnetic waves, but their wavelength is shorter than microwaves: between 700 nm and 1 mm. Their wavelength is also longer than visible light.
The two types of waves are also used for different purposes. In particular:
- Infrared waves are emitted by any hot object, and their intensity depends on the temperature of the object. Therefore, they are used in astronomy to show the heat released by astronomical objects (option 1)
- Microwaves are used to study the Cosmic Microwave Background (CMB). This is electromagnetic radiation that permeates the whole universe, and its wavelength depends inversely on the local temperature. Therefore, areas with longer wavelength have lower temperature, and viceversa. Therefore, microwaves are used to measure temperature differences in space (option 3).
Answer:
0.435atm
Explanation:
cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains air with a volume of 0.185 m3 at a pressure of 0.740 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.315 m3. If the temperature remains constant, what is the final value of the pressure?
Given
Initial pressure P1= 0.740atm
Initial volume V1= 0.185 m3
Final pressure P2= ?
Final volume V2= 0.315 m3
At constant temperature, the pressure of a syste is inversely proportional to volume, by Boyles law then
P1V1=P2V2
P2=P1V1/V2
=(0.185*0.740)/0.315
0.1369/0.315
= 0.435atm
Therefore, final pressure is 0.435atm
Answer:
43.2
because to convert from m/sec to kmph we need to multiply by 3600/1000