Answer:
Vx = 35.31 [km/h]
Vy = 18.77 [km/h]
Explanation:
In order to solve this problem, we must decompose the velocity component by means of the angle of 28° using the cosine function of the angle.
![v_{x} = 40*cos(28)\\V_{x} = 35.31 [km/h]](https://tex.z-dn.net/?f=v_%7Bx%7D%20%3D%2040%2Acos%2828%29%5C%5CV_%7Bx%7D%20%3D%2035.31%20%5Bkm%2Fh%5D)
In order to find the vertical component, we must use the sine function of the angle.
![V_{y}=40*sin(28)\\V_{y} = 18.77 [km/h]](https://tex.z-dn.net/?f=V_%7By%7D%3D40%2Asin%2828%29%5C%5CV_%7By%7D%20%3D%2018.77%20%5Bkm%2Fh%5D)
Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
Answer:
matter is the correct answer.
Answer:
Magnetic field, B = 0.042 T
Explanation:
It is given that,
Speed of charged particle, 
Angle between velocity and the magnetic field, 
Charge, 
Magnetic force, F = 0.002 N
The magnetic force is given by :

B is the magnetic field


B = 0.042 T
So, the strength of the magnetic field is 0.042 Tesla. Hence, this is the required solution.
Answer is 4,400,000 kg • m/s