For the first question, you got them right, for the two you left blank, initial(beginning) velocity: 2 m/s the final velocity is: 12 m/s
Hi, this sounds like a chemistry question:
If you wanted to separate sand from iron fillings for example, using tweezers would be a great tool to do this, depending on the size of the iron fillings.
Answer:
0.015 atm
Explanation:
The pressure of the gas can be calculated using Ideal Gas Law:

<u>Where:</u>
n: is the number of moles of the gas
R: is the gas constant = 0.082 L*atm/(K*mol)
V: is the volume of the container = 1.64 L
T: is the temperature
We need to find the number of moles and the temperature. The number of moles is:

<u>Where:</u>
M: is the molar mass of the N₂ = 14.007 g/mol*2 = 28.014 g/mol
m: is the mass of the gas = 0.226 g

Now, the temperature can be found using the following equation:
<u>Where:</u>
R: is the gas constant = 0.082 L*atm/K*mol = 8.314 J/K*mol
: is the root-mean-square speed of the gas = 182 m/s
By solving the above equation for T, we have:
Finally, we can find the pressure of the gas:

Therefore, the pressure of the gas is 0.015 atm.
I hope it helps you!
Answer:
α =18.75 rad/s²
Explanation:
Given that
Acceleration a = 0.15 g
We know that g =10 m/s²
a= 0.15 x 10 = 1.5 m/s²
d= 16 cm
Radius r= 8 cm
Lets take angular acceleration =α rad/s²
As we know that
a= α r
Now by putting the values
1.5 = α x 0.08
α =18.75 rad/s²
A modern statement of Charles's law is: When the pressure on a sample of a dry gas is held constant, the Kelvin temperature and the volume will be in direct proportion. ... The equation shows that, as absolute temperature increases, the volume of the gas also increases in proportion.
i hope it will help