A girl standing on a floor would have two opposite forces acting on it. These forces are the weight and the normal force. Since no other forces are acting and that the girl is at rest, then the weight must equate to the normal force. Therefore, the supporting force would be:
F = mg = 55kg (9.81 m/s^2) = 539.55 N
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:

where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:

So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.
What about it??
Please explain and I will help.
I don’t know what you’re asking.
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.