Answer:
2.95 * 10^23 atoms
Explanation:
The number of atoms in a mole is always equal to <u>Avogadro's constant</u>, which is <u>6.02214076×10²³ mol⁻¹</u>.
To find the number of atoms in 0.490 moles of barium, multiply it with <u>Avogadro's constant</u>:
0.490 mol * 6.02214076×10²³ mol⁻¹ ≈ 2.9508 * 10^23
Convert to SigFigs (if necessary):
2.95 * 10^23
Answer:
1.4952 grams of sodium bicarbonate she would need to ingest to neutralize this much HCl.
Explanation:

Moles of hydrochloric acid = n
Volume of hydrochloric acid solution = 200.0 mL = 0.200 L
Molarity of the hydrochloric acid = 0.089 M
of HCL

According to reaction, 1 mole of HCl is neutralized by 1 mole of sodium bicarbonate.
Then 0.0178 moles of HCl wil be neutralized by :
of sodium bicarbonate
Mass of 0.0178 moles of sodium bicarbonate:
0.0178 mol × 72 g/mol = 1.4952 g
1.4952 grams of sodium bicarbonate she would need to ingest to neutralize this much HCl.
The third answer because there are two of each atom
Answer:
3. It should restate the question
4. a controlled experiment
5. if I freeze a tennis ball then it will not bounce as high
Explanation:
Answer:
a tendency to do nothing or to remain unchanged.
Explanation: