<h3>
Answer:</h3>
28.52 seconds
<h3>
Explanation:</h3>
Initial number of atoms of Nitrogen 12,000 atoms
Half-life = 7.13
Number of atoms after decay = 750 atoms
We are required to determine the time taken for the decay.
Note that half life is the time taken for a radioactive isotope to decay to a half of its original amount.
Using the formula;
Remaining amount = Initial amount × (1/2)^n , where n is the number of half lives
In our case;
750 atoms = 12,000 atoms × (1/2)^n
0.0625 = 0.5^n
n = log 0.0625 ÷ log 0.5
n = 4
But, 1 half life =7.13 seconds
Therefore;
Time taken = 7.13 seconds × 4
= 28.52 seconds
Therefore, the time taken for 12,000 atoms of nitrogen to decay to 750 atoms is 28.52 seconds
With what? I don’t see a photo or such.
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
As a base is added to an acidic solution, the H+ ions in solution that make it acidic are slowly neutralized into water (via OH-, the base). As these ions are converted into water the concentration of them decreases, so the pH decreases, as they are directly related.
Hope this helps!
The compound : C₄₀H₄₄N₄O
<h3>Further explanation</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
• Determine the mass ratio of the constituent elements of the compound.
• Determine the mole ratio by dividing the percentage by the atomic mass
The mol ratio of composition : C : H : N : O
