Answer:
when the carbon dioxide infiltrates the gas into molecules
Explanation:
Enthalpy change is the difference between energy used and energy gained. The change in enthalpy of the liquid mercury is 0.0231 kJ.
<h3>What is the enthalpy change?</h3>
Enthalpy change is the difference between the energy used to break chemical bonds and the energy gained by the products formed in a chemical reaction.
The enthalpy change is given by,

and,

Given,
Mass of the liquid mercury (m) = 11.0 gm
The specific heat of mercury (c) = 0.14 J per g per degree Celsius
Temperature change = 15 degrees Celsius
Enthalpy change is calculated as:

Therefore, 0.0231 kJ is the change in enthalpy.
Learn more about enthalpy change here:
brainly.com/question/10932978
#SPJ4
Answer:
2 Cr(s) + 3 Fe(NO3)2(aq) = 3 Fe(s) + 2 Cr(NO3)3(aq)
Explanation:
I balanced this chemical equation so that both sides are equal, meaning that the mass of reactants is equal to mass of products.
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

Data:
Molar Mass of NaOH = 40 g/mol
Solving: <span>According to the Law Avogradro, we have in 1 mole of a substance, 6.02x10²³ atoms/mol or molecules
</span>
1 mol -------------------- 6.02*10²³ molecules
y mol -------------------- 2.70*10²² molecules
6.02*10²³y = 0.270*10²³


Solving: <span>Find the mass value now
</span>
40 g ----------------- 1 mol of NaOH
x g ------------- 0.04 mol of NaOH


Answer:
The mass is 1.6 grams