1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
12

In term of molecules explain what happen to a sugar cube when it is placed into a beaker of water

Chemistry
2 answers:
bazaltina [42]3 years ago
7 0
The sugar cube dissolves.<span />
Setler [38]3 years ago
5 0
The molecules in the sugar move from an area of higher concentration to an area of lower concentration in the water. ... They pick up molecules outside of the cell and bring them in.
You might be interested in
Good Morning This is a question I need help on pleas help
elena55 [62]

Answer:

S.

Explanation:

North and South must always be opposite of each other.

8 0
3 years ago
Use standard enthalpies of formation to calculate Δ H ∘ rxn for each reaction. MISSED THIS? Read Section 7.9; Watch KCV 7.9, IWE
Eva8 [605]

Answer:

Standard Heat of Reaction 1 = -136.2 kJ/mol

Standard Heat of Reaction 2 = -41.166 kJ/mol

Standard Heat of Reaction 3 = -136.07 kJ/mol

Standard Heat of Reaction 4 = 279.448kJ/mol

Explanation:

C₂H₄ (g) + H₂ (g) → C₂H₆ (g)

CO (g) + H₂O (g) → H₂ (g) + CO₂ (g)

3NO₂ (g) + H₂O (l) → 2HNO₃ (aq) + NO (g)

Cr₂O₃ (s) + 3CO (g) → 2Cr (s) + 3CO₂ (g)

The required standard heat of formation for each of the reactants and product above, as obtained from literature is listed below.

C₂H₄ (g), 52.5 kJ/mol

H₂ (g), 0 kJ/mol

C₂H₆ (g), -83.7 kJ/mol

CO (g), -110.525 kJ/mol

H₂O (g), -241.818 kJ/mol

H₂ (g), 0 kJ/mol

CO₂ (g), -393.509 kJ/mol

NO₂ (g), 33.2 kJ/mol

H₂O (l), -285.8 kJ/mol

HNO₃ (aq), -206.28 kJ/mol

NO (g), 90.29 kJ/mol

Cr₂O₃ (s), -1128.4 kJ/mol

CO (g), -110.525 kJ/mol

Cr (s), 0 kJ/mol

CO₂ (g), -393.509 kJ/mol

Note that

ΔH∘(rxn) = ΔH∘(products) - ΔH∘(reactants)

C₂H₄ (g) + H₂ (g) → C₂H₆ (g)

ΔH∘(rxn) = ΔH∘(products) - ΔH∘(reactants)

ΔH∘(products) = (1×-83.7) = -83.7 kJ/mol

ΔH∘(reactants) = (1×52.5) + (1×0) = 52.5 kJ/mol

ΔH∘(rxn) = -83.7 - 52.5 = -136.2 kJ/mol

CO (g) + H₂O (g) → H₂ (g) + CO₂ (g)

ΔH∘(rxn) = ΔH∘(products) - ΔH∘(reactants)

ΔH∘(products) = (1×0) + (1×-393.509) = -393.509 kJ/mol

ΔH∘(reactants) = (1×-110.525) + (1×-241.818) = -352.343 kJ/mol

ΔH∘(rxn) = -393.509 - (-352.343) = -41.166 kJ/mol

3NO₂ (g) + H₂O (l) → 2HNO₃ (aq) + NO (g)

ΔH∘(rxn) = ΔH∘(products) - ΔH∘(reactants)

ΔH∘(products) = (2×-206.28) + (1×90.29) = -322.27 kJ/mol

ΔH∘(reactants) = (3×33.2) + (1×-285.8) = -186.2 kJ/mol

ΔH∘(rxn) = -322.27 - (-186.2) = -136.07 kJ/mol

Cr₂O₃ (s) + 3CO (g) → 2Cr (s) + 3CO₂ (g)

ΔH∘(rxn) = ΔH∘(products) - ΔH∘(reactants)

ΔH∘(products) = (2×0) + (3×-393.509) = -1,180.527 kJ/mol

ΔH∘(reactants) = (1×-1128.4) + (3×-110.525) = -1,459.975 kJ/mol

ΔH∘(rxn) = -1,180.527 - (-1,459.975) = 279.448 kJ/mol

Hope this Helps!!!

4 0
3 years ago
What minimum energy is required to excite a vibration in HF?
Elodia [21]

Answer:

The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.

Explanation:

hope it helps.

have a wonderful day!

7 0
3 years ago
Write the name and formula for the chemical substance which is produced in most acid-base neutralization reactions
Minchanka [31]
Acid + base gives you salt and H2O
7 0
3 years ago
Which of the following statements are true about elements and compounds?
Leto [7]
The answer is d hope this helps
3 0
3 years ago
Other questions:
  • Which of the following measurements is equal to 150dL
    14·1 answer
  • The mass of a watch glass was measured four times. The masses were
    9·2 answers
  • What is the formula for the molecular compound disulfur decafluoride?
    7·2 answers
  • Fission reactions are induced in nuclear power plants because they produce great amounts of energy. Often, a nucleus must be for
    11·1 answer
  • Which is an example of how the body maintains homeostasis? by increasing thirst when cells are low on water by decreasing thirst
    12·2 answers
  • What one is correct?
    6·1 answer
  • Gasone provides the energy that powers many car engines. In an engine, gasoline and oxygen are mixed together and burned, creati
    13·2 answers
  • The average small intestine is about 3050 mm long&gt; how many yards is this?
    14·1 answer
  • HELP ME PLZ
    5·1 answer
  • The halogens are in Group 7 of the periodic table.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!