1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
14

Two rocks of different masses are rolling down a hill at the same speed. Which rock (small one or big one) would have more kinet

ic energy?
Physics
2 answers:
Angelina_Jolie [31]3 years ago
6 0

Answer:

The larger rock would roll down the hill faster

Explanation:

aivan3 [116]3 years ago
3 0

Answer:

Kinetic energy of bigger rock will be more than that of smaller one.

Explanation:

Kinetic energy of the rock is given by,

Kinetic energy = \frac{1}{2} m v^{2}

As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock

Kinetic energy ∝ mass

So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.

Hence, Kinetic energy of bigger rock will be more than that of smaller one.

You might be interested in
What are the possible units for a spring constant
AleksAgata [21]
Hooke's Law says that F=-kx where k is the spring constant measured in N/m (newtons per meter)
5 0
3 years ago
Read 2 more answers
A car of mass 800kg travels a distance of 40m at constant speed in a duration of 2.0s. The car exerts a forward force of 15kN.
Alex17521 [72]

W = F × s

W = 15kN × 40 m

W = 15.000 N × 40 m

W = 600.000 J

P = W/t

P = 600.000 J/2 s

P = 300.000 Watt

P = 300kWatt

#LearnWithEXO

6 0
2 years ago
A Honda Civic travels in a straight line along a road. Its distance x from a stop sign is given as a function of time t by the e
andrew-mc [135]
Average velocity = (x( 2.08 ) - x ( 0 )) / ( 2.08 s - 0 s )
x ( 2.08 ) = 1.42 * 2.08² - 0.05 * 2.08³ =
= 1.42 * 4.3264 - 0.443456 = 6.143484 - 0.443456 ≈ 5.7 m
v = ( 5.7 m - 0 m) / (2.08 s - 0 s ) = 5.7 / 2.08 m/s = 27.4 m/s
3 0
3 years ago
Define neuron and nerve<br>cell​
san4es73 [151]

Answer: Hi!

A neuron is a basic working unit of the brain. Neurons are special cells designed to transfer information to other nerve, muscle, or gland cells. They are pretty cool - looking too! (A slightly irregular circular shape with branches reaching out from all sides.) A neuron is a nerve cell. Nerve cells are the way of communication in the nervous system.

Hope this helps!

3 0
3 years ago
Read 2 more answers
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bu
vlada-n [284]

Answer:

\frac{1}{10}M

Explanation:

To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after

As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved

⇒I_{1} \times W_{1} =I_{2} \times W_{2}

  • I_{1} is the moment of interia of earth before impact
  • W_{1} is the angular velocity of earth about an axis passing through the center of earth before impact
  • I_{2} is moment of interia of earth and asteroid system
  • W_{2} is the angular velocity of earth and asteroid system about the same axis

let  W_{1}=W

since \text{Time period of rotation}∝\frac{1}{\text{Angular velocity}}

⇒ if time period is to increase by 25%, which is \frac{5}{4} times, the angular velocity decreases 25% which is \frac{4}{5}  times

therefore W_{1} = \frac{4}{5} \times W_{1}

I_{1}=\frac{2}{5} \times M\times R^{2}(moment of inertia of solid sphere)

where M is mass of earth

           R is radius of earth

I_{2}=\frac{2}{5} \times M\times R^{2}+M_{1}\times R^{2}

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)

where M_{1} is mass of asteroid

⇒ \frac{2}{5} \times M\times R^{2} \times W_{1}=}(\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})\times(\frac{4}{5} \times W_{1})

\frac{1}{2} \times M\times R^{2}= (\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})

M_{1}\times R^{2}= \frac{1}{10} \times M\times R^{2}

⇒M_{1}=}\frac{1}{10} \times M

3 0
2 years ago
Other questions:
  • What part of Earth has a faster linear speed. *
    11·1 answer
  • What produces light and all other electromagnetic waves?
    10·1 answer
  • If we have two objects with the same mass but different densities (Lets assume object 1 is denser,therefore volume is lower rela
    12·1 answer
  • A completely inelastic collision occurs between two balls of wet putty that move directly toward each other along a vertical axi
    9·1 answer
  • What is the correct answer?
    5·2 answers
  • After a wave passes through a medium, particles in the medium
    8·1 answer
  • Abishek is a runner. He runs the 100 m sprint
    5·2 answers
  • Which is not poor conductor?
    12·1 answer
  • How does an annular eclipse differ from a total eclipse.
    7·1 answer
  • 3. Specify the wrong sentences.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!