Answer:

Given:
Radius of ball bearing (r) = 1.5 mm = 0.15 cm
Density of iron (ρ) = 7.85 g/cm³
Density of glycerine (σ) = 1.25 g/cm³
Terminal velocity (v) = 2.25 cm/s
Acceleration due to gravity (g) = 980.6 cm/s²
To Find:
Viscosity of glycerine (
)
Explanation:


Substituting values of r, ρ, σ, v & g in the equation:






<h2>HOPE THIS HELPS YOU ....</h2><h3>PLEASE MARK ME AS BRAINILIST...</h3>
Answer:

Explanation:
We have,
The surface temperature of the star is 60,000 K
It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

Here,
= wavelength

So, the wavelength of the star is
.
Answer:
<em>585lb</em>
Explanation:
Given the formula for calculating the magnitude of the resultant force as;

<em>Given </em>
<em></em>
<em></em>
<em>Hence the magnitude of the resultant force is 585lb</em>
Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>
<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>