Answer:
The elevator's free-body diagram has three forces, the force of gravity, a downward normal force from you, and an upward force from the tension in the cable holding the elevator. The combined system of you + elevator has two forces, a combined force of gravity and the tension in the cable.
Explanation:
Answer:
There are many examples of electrostatic phenomena, from those as simple as the attraction of the plastic wrap to one's hand after it is removed from a package to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier & laser printer operation
Answer:
1.) U = 39.2 m/s
2.) t = 4s
Explanation: Given that the
height H = 78.4m
The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2
Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0
Velocity of projections can be achieved by using the formula
V^2 = U^2 - 2gH
g will be negative as the object is moving against the gravity
0 = U^2 - 2 × 9.8 × 78.4
U^2 = 1536.64
U = sqrt( 1536.64 )
U = 39.2 m/s
The time it takes to reach its highest point can be calculated by using the formula;
V = U - gt
Where V = 0
Substitute U and t into the formula
0 = 39.2 - 9.8 × t
9.8t = 39.2
t = 39.2/9.8
t = 4 seconds.
Work done by the force = Force x displacement. Power = work done/time = F.s/t = F.u.t/t = F.u = 95 x 20 = 1900J. {S=ut because acceleration is zero since car is moving at constant velocity}.
Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>