In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Answer: I think its 120
Explanation: thx for the free points :)
Answer:
Latent heatnof fusion = 417.5 J
Explanation:
Specific latent heat of fusion of water is 334kJ.kg-1.
The heat required to melt water when it's ice I called latent heat because there is no temperature change, the only change observed is change in physical structure.
The amount of heat required to change 1 kg of solid to its liquid state (at its melting point) at atmospheric pressure is called Latent heat of Fusion.
Latent heat = ML
Latent heat= 1.25 kg * 334kJ.kg-1
Latent heat = 1.25*334 *(J/kg)*kg
Latent heat = 417.5 J
Answer:
D. 4000 km
Explanation:
f = Frequency of wave that is being transmitted = 76 Hz
= Wavelength of wave that is being transmitted
v = The velocity of electromagnetic waves through air = 
Velocity of a wave is given by

Hence, the approximate wavelength of the waves is 4000 km
Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.