Answer:
c. 
Explanation:
= Initial distance between asteroid and rock = 7514 km = 7514000 m
= Final distance between asteroid and rock = 2823 km = 2823000 m
= Initial speed of rock = 136 ms⁻¹
= Final speed of rock = 392 ms⁻¹
= mass of the rock
= mass of the asteroid
Using conservation of energy
Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

Answer:
A
Explanation:
This is because distance traveled (i.e. displacement) is the integral of the velocity function, and velocity is the first derivative of the displacement function. To put this in perspective, the area bounded by a curve can be found by taking the integral of the equation of the curve, taking values on the x-axis as limits.
this is an equation that you need to solve for motional emf. motional emf=vBL, where v is velocity in meters/second, B is magnetic field in Teslas and L is length or distance the rails are apart from each other. when we plug everything into the formula given above, we get: motional emf=5m/s*0.80T*0.20m. solving all this we get 0.8 volts. pretty sure that since they are giving you the direction of the field, they want to know which way the current will flow . since the conductor is moving from left to right the area of the field is increasing which means magnetic flux is increasing as Ф(magnetic flux)=B(magnetic field)*A(area)*cosФ(little phi is the angle to the normal. in this case little fee is 0 degrees so the cosФ doesn't matter). so ↑Ф=B↑A. if magnetic flux is increasing, the induced magnetic field is in the opposite direction as the original magnetic field meaning the induced magnetic field will be out of the page. using the right hand rule which says that if the field is in to the page, the current should go clockwise and if the field is out of the page, the current is counterclockwise so that means that the current should be going counter clockwise since the induced field is going out of the screen. the top of the conducting wire will have its current go to the left and the bottom of the conducting wire will have the current go to the right.
Answer:
0.21%
Explanation:
We are given;
Mass; m = 100 kg
Diameter; d = 2.2 mm = 2.2 × 10^(-3) m
Young's modulus; E = 12.5 x 10^(10) N/m².
Formula for area is;
A = πd²/4
A = (π/4) x (2.2 x 10^(-3))²
A = 3.8 x 10^(-6) m²
Force; F = mg
g is acceleration due to gravity and has a constant value of 9.8 m/s²
F = 100 × 9.8
F = 980 N
Formula for young's modulus is;
E = Stress/strain
Formula for stress = F/A
Formula for strain = ΔL/L
Thus;
E = (F/A)/(ΔL/L)
Making ΔL/L the subject, we have;
ΔL/L = (F/A)/E
Plugging in the relevant values;
ΔL/L = 980/(3.8 x 10^(-6) × 12.5 × 10^(10))
ΔL/L = 0.0021
Then percentage increase in length of a wire = 0.0021 × 100% = 0.21%