A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
Since the bulb consumes 100 watts of power and its efficiency is 95%,
it generates 95 watts of light energy and 5 watts of heat energy whenever
it's turned on.
5 watts means 5 joules of energy per second.
(2.5 hours) x (3,600 seconds/hour) = 9,000 seconds
(9,000 seconds) x (5 joules/second) = 45,000 joules of heat in 2.5 hours
Answer: The answer is D: 300,000km/s
Explanation:
Explanation:
Okay, well, Saturn's rings form a wide and complex system, consisting mostly of particles and pieces of ice, and are highly visible. They may have formed from one or more moons that broke up due to a collision, or are left over from early debris that never coalesced into a moon... And, The rings of Uranus are thin and hard to see, consisting mostly of chunks of carbon and hydrocarbons with very little reflectivity. They may also have formed from the breakup of a small moon due to a collision. They may be kept thin by the presence of shepherd moons.
Hope I helped !
:)