Answer:
a chain of decays that result in a stable nucleus
Explanation:
Decay series is a series of decay in which radioactive element is decomposed in different elements until it produces one stable atom.
Answer: 3.4 atm
Explanation:
Given that:
Volume of gas V = 5L
(since 1 liter = 1dm3
5L = 5dm3)
Temperature T = 0°C
Convert Celsius to Kelvin
(0°C + 273 = 273K)
Pressure P = ?
Number of moles of gas n = 0.75 moles
Note that Molar gas constant R is a constant with a value of 0.0821 atm dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 5dm3 = 0.75 moles x (0.0821 atm dm3 K-1 mol-1 x 273K)
p x 5dm3 = 16.8 atm dm3
p = (16.8 atm dm3 / 5dm3)
p = 3.4 atm
Thus, a pressure of 3.4 atm is exerted by the gas.
Answer: The question has some details missing. here is the complete question ; An analytical chemist is titrating 88.4 mL of a 0.2700 M solution of ammonia (NH3 with a 0.4300 M solution of HNO3. The pK, of ammonia is 4.74 Calculate the pH of the base solution after the chemist has added 66.3 mL of the HNO3 solution to it . Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution
Explanation:
Given ;
- number of moles of base = 88.4 x 0.2700 = 23.868
- number of moles of acid = 0.4300 x 66.3 = 28.509
- This was after the equivalence point, as such net moles of acid = 28.509 - 23.868 = 4.641mol
- total volume of solution = 88.4 + 66.3 = 154.7mL
- Concentration of Acid = moles/volume = 4.641/154.7 = 0.03M
- From pH = -log[H^+] = -Log[0.03]
1.806x10^24
Written equation form(always start the equation off with what you know based off of the question!):
3mol(CCl4)•6.022x10^23/1mol = 1.806x10^24
Good luck!
It's chlorine, it's one of the few elements with 7 valence electrons