The temperature is -8 F
Answer D
Properties of a solution that depend only on the ratio of the number of particles of solute and solvent in the solution are known as colligative properties. For this problem, we use boiling point elevation concept.
ΔT(boiling point) = (Kb)mi
ΔT(boiling point) = (0.51 C-kg / mol )(4.0 mol / 2.05 kg ) (2)
ΔT(boiling point) = 1.99 C
T(boiling point) = 101.99 C
Hey there! Let's get that problem solved!
First: Let's define, "solution."
Solution: <span>a liquid mixture in which the minor component (the solute) is uniformly distributed within the major component (the solvent).
Next: Ask yourself, "can a solution be taken apart?"
In some cases, yes. It can.
The solution of salt water for example, can be physically separated by evaporation. (place salt-water in a pot on a heated stove, place the cover to the pot on the opening, wait a few minutes, remove the top, and you can (and taste) the water without the salt!) </span><span />
Answer:
7.22 feet long
Explanation:
1 meter = 3.28084 feet
2.2 × 3.28084 = 7.2<u>1</u>785
= 7.22
I hope this is helpful :)
Answer:
It's because removal of electron from an atom, reduces the size of an atom.
Explanation:
When an electron is removed from an atom, it becomes an ion and in this case it will become a postive ion.
When an electron is removed from an atom, the charge balance of an atom is disturbed and positive charge increases in comparison to the negative charge. This results in increase nuclear (positive) charge which exerts greater attraction on the remaining electrons and as a result the remaining electrons are more strongly attracted by the nucleus and in this way the atomic size is decreased. Due to this increased nuclear attraction and reduced atomic size, it bcomes difficult to remove more electeon from the positively charged ion of reduced size. This is the reason that each successive ionization of electron requires a greater amount of energy.
The ionization energy has inverse relation with the size or radius of an atom. This also justifies the reason that why each successive ionization of an electron requires greater amount of energy.