Answer:

Explanation:
It says “Momentum before the collision is equal to momentum after the collision.” Elastic Collision formula is applied to calculate the mass or velocity of the elastic bodies.












Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
<h3><u>
Explanation:</u></h3>
The range in which the light exists is described as the electromagnetic spectrum. The light waves, radio waves, gamma rays,etc that exist in the world is not visible to human eyes. A kind of wave that modifies magnetic and electric fields is light. Spectroscopy makes use of all the frequencies and the wavelengths of the electromagnetic radiation.
The part of the electromagnetic spectrum that can be seen by the human eyes is the visible spectrum. The light waves with the wavelengths of 380 to 740 nm can be sen by the human eyes. Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
At point C because it is at the lowest position.
<span>
English "natural philosopher" (the contemporary term for physicist) Michael Faraday is renowned for his discovery of the principles of electro-magnetic induction and electro-magnetic rotation, the interaction between electricity and magnetism that led to the development of the electric motor and generator. The unit of measurement of electrical capacitance - the farad (F) - is named in his honor.
Faraday's experimental work in chemistry, which included the discovery of benzene, also led him to the first documented observation of a material that we now call a semiconductor. While investigating the effect of temperature on "sulphurette of silver" (silver sulfide) in 1833 he found that electrical conductivity increased with increasing temperature. This effect, typical of semiconductors, is the opposite of that measured in metals such as copper, where conductivity decreases as temperature is increased.
In a chapter entitled "On Conducting Power Generally" in his book Experimental Researches in Electricity Faraday writes "I have lately met with an extraordinary case ... which is in direct contrast with the influence of heat upon metallic bodies ... On applying a lamp ... the conducting power rose rapidly with the heat ... On removing the lamp and allowing the heat to fall, the effects were reversed."
We now understand that raising the temperature of most semiconductors increases the density of charge carriers inside them and hence their conductivity. This effect is used to make thermistors - special resistors that exhibit a decrease in electrical resistance (or an increase in conductivity) with an increase in temperature.
<span>
Next Milestone
</span>
Contemporary Documents
<span>
<span>Faraday, M. Experimental Researches in Electricity, Volume 1. (London: Richard and John Edward Taylor, 1839) pp.122-124 (para. 432). Note: This section appears on different pages in later editions of the book. The material in the book is reprinted from articles by Faraday published in the Philosophical Transactions of the Royal Society of 1831-1838. </span>
</span>
More Information
<span>
<span>Hirshfeld, Alan W. The Electric Life of Michael Faraday. Walker & Company (March 7, 2006).</span>
<span>Friedel, Robert D. Lines and Waves: Faraday, Maxwell and 150 Years of Electromagnetism. Center for the History of Electrical Engineering, Institute of Electrical and Electronics Engineers (1981).</span>
</span>
</span>
' A ' is one crest of the wave. After every wavelength, there's another one.
' B ' . . . the vertical arrow under B shows the amplitude of the wave
' C ' is one trough of the wave. After every wavelength, there's another one.
' D ' . . . the horizontal arrow over D shows the wavelength.