Answer:
0.23
Explanation:
- It is known that, the mass to mass ratio of the salt to water
= (mass of salt / mass of water)
= (25.0 g / 105.0 g)
= 0.23
Answer:
C₆H₈O₆
Explanation:
First off, the<u> percent of oxygen by mass</u> of vitamin C is:
- 100 - (40.9+4.58) = 54.52 %
<em>Assume we have one mol of vitamin C</em>. Then we would have <em>180 grams</em>, of which:
- 180 * 40.9/100 = 73.62 grams are of Carbon
- 180 * 4.58/100 = 8.224 grams are of Hydrogen
- 180 * 54.52/100 = 98.136 grams are of Oxygen
Now we <u>convert each of those masses to moles</u>, using the <em>elements' respective atomic mass</em>:
- C ⇒ 73.62 g ÷ 12 g/mol = 6.135 mol C ≅ 6 mol C
- H ⇒ 8.224 g ÷ 1 g/mol = 8.224 mol H ≅ 8 mol H
- O ⇒ 98.136 g ÷ 16 g/mol = 6.134 mol O ≅ 6 mol O
So the molecular formula for vitamin C is C₆H₈O₆
Even though Hydrogen is originally in group 1, based on this property, we can say it is in group 6.
Because:
Group 6 would mean that it only needs 2 more valence electrons till the octet (8 valence electrons). This would make it reactive, yet, in normal conditions, unlike group 7.
Answer:
a) Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) 3.14g must be added
Explanation:
a) For the reaction:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) + H₂O(l) + NH₃(g)
As you see, there are 8 moles of water in reactants and 2 moles of oxygen in octahydrate, thus, water moles must be 10:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + NH₃(g)
To balance hydrogens, the other coefficients are:
Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) As you see in the balanced reaction, 1 mole of barium hydroxide octahydrate reacts with 2 moles of NH₄SCN. 6.5g of Ba(OH)₂.8H₂O are:
6.5 g × (1mol / 315.48g) =<em> 0.0206moles of Ba(OH)₂.8H₂O</em>. Thus, moles of NH₄SCN that must be used for a complete reaction are:
0.0206moles of Ba(OH)₂.8H₂O × ( 2 mol NH₄SCN / 1 mol Ba(OH)₂.8H₂O) = <em>0.0412moles of NH₄SCN</em>. In grams:
0.0412moles of NH₄SCN × ( 76.12g / 1mol) = <em>3.14g must be added</em>
Following the Law of Conservation of Mass, you simply add the mass of both substances. Thus, 160 grams + 40 grams = 200 grams. So, even if initially, they are in liquid and solid form, they would still have the same mass even if they change phases, owing to that they are in a closed space.