Material that is not attracted to metal
I believe this is what you have to do:
The force between a mass M and a point mass m is represented by

So lets compare it to the original force before it doubles, it would just be the exact formula so lets call that F₁
So F₁ = G(Mm/r^2)
Now the distance has doubled so lets account for this in F₂:
F₂ = G(Mm/(2r)^2)
Now square the 2 that gives you four and we can pull that out in front to give
F₂ =
G(Mm/r^2)
Now we can replace G(Mm/r^2) with F₁ as that is the value of the force before alterations
now we see that:
F₂ =
F₁
So the second force will be 0.25 (1/4) x 1600 or 400 N.
You are correct!
Happy to assist you!
Answer:
The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com
For this case, the first thing you should do is define a reference system.
Once the system is defined, we must follow the following steps:
1) Do the sum of forces in a horizontal direction
2) Do the sum of forces in vertical direction
The forces will be balanced if for each direction the net force is equal to zero.
The forces will be unbalanced if for each direction the net force is nonzero.
Answer:
Add the forces in the horizontal and vertical directions separately.