1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
11

if you are in Birmingham AL, and you want to use your cell phone to talk to your cousin in Houston, TX, what must occur in order

for communication to be completed?
Physics
1 answer:
lesantik [10]3 years ago
3 0

Answer:

For communication to be communicated between you and your cousin who is in Houston,Texas, when a call is made by you, a request is made to the specific phone, and the telephone tower will get the request from the mobile phone. Then a signal is sent via a transmitter underground, by this the satellite communicates with the local receiver in Houston, that is linked to the local tower over there, the tower would request for your cousin's number and connects the two of you, once a link is set.

Explanation:

From the example stated, what is required for such for a far distance, is a communication satellite link.

When a call is made by you, the a connection request is sent to the specified phone.The telephone tower receives the request from The mobile phone. The local tower(Birmingham,Al) is linked to a ground transmitter by the means of a Fiber optical cable.

A signal is sent to satellite via the ground transmitter.The satellite then set's off the local receiver in (Houston,Texas) which on it's end is connected to the local tower there. This tower then ask for your cousin's mobile for a call that will be incoming, a link is set, once he/she receives the call, from there a conversation can be done.

You might be interested in
For this situation to demonstrate a balanced force, how much force must Omar apply? (In the picture, Sam is pushing a box to the
11111nata11111 [884]
The answers 10N as it equals it out
3 0
3 years ago
Read 2 more answers
The amount of the lighted side of the moon you can see is the same during
attashe74 [19]

<u>Answer:</u>

The amount of the lighted side of the moon you can see is the same during "how much of the sunlit side of the moon faces Earth".

<u>Explanation:</u>

The Moon is in sequential rotation with Earth, and thus displays the Sun, the close side, always on the same side. Thanks to libration, Earth can display slightly greater than half (nearly 59 per cent) of the entire lunar surface.

The side of the Moon facing Earth is considered the near side, and the far side is called the reverse. The far side is often referred to as the "dark side" inaccurately but it is actually highlighted as often as the near side: once every 29.5 Earth days. During the New Moon the near side becomes blurred.

5 0
3 years ago
A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b.
bija089 [108]

a)

i) Potential for r < a: V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

ii) Potential for a < r < b:  V(r)=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

iii) Potential for r > b: V(r)=0

b) Potential difference between the two cylinders: V_{ab}=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c) Electric field between the two cylinders: E=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

Explanation:

a)

Here we want to calculate the potential for r < a.

Before calculating the potential, we have to keep in mind that the electric field outside an infinite wire or an infinite cylinder uniformly charged is

E=\frac{\lambda}{2\pi \epsilon_0 r}

where

\lambda is the linear charge density

r is the distance from the wire/surface of the cylinder

By integration, we find an expression for the electric potential at a distance of r:

V(r) =\int Edr = \frac{\lambda}{2\pi \epsilon_0} ln(r)

Inside the cylinder, however, the electric field is zero, because the charge contained by the Gaussian surface is zero:

E=0

So the potential where the electric field is zero is constant:

V=const.

iii) We start by evaluating the potential in the region r > b. Here, the net electric field is zero, because the Gaussian surface of radius r here contains a positive charge density +\lambda and an equal negative charge density -\lambda. Therefore, the net charge is zero, so the electric field is zero.

This means that the electric potential is constant, so we can write:

\Delta V= V(r) - V(b) = 0\\\rightarrow V(r)=V(b)

However, we know that the potential at b is zero, so

V(r)=V(b)=0

ii) The electric field in the region a < r < b instead it is given only by the positive charge +\lambda distributed over the surface of the inner cylinder of radius a, therefore it is

E=\frac{\lambda}{2\pi r \epsilon_0}

And so the potential in this region is given by:

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r} (1)

i) Finally, the electric field in the region r < a is zero, because the charge contained in this region is zero (we are inside the surface of the inner cylinder of radius a):

E = 0

This means that the potential in this region remains constant, and it is equal to the potential at the surface of the inner cylinder, so calculated at r = a, which can be calculated by substituting r = a into expression (1):

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

And so, for r<a,

V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

b)

Here we want to calculate the potential difference between the surface of the inner cylinder and the surface of the outer cylinder.

We have:

- Potential at the surface of the inner cylinder:

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

- Potential at the surface of the outer cylinder:

V(b)=0

Therefore, the potential difference is simply equal to

V_{ab}=V(a)-V(b)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c)

Here we want to find the magnitude of the electric field between the two cylinders.

The expression for the electric potential between the cylinders is

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

The electric field is just the derivative of the electric potential:

E=-\frac{dV}{dr}

so we can find it by integrating the expression for the electric potential. We find:

E=-\frac{d}{dr}(\frac{\lambda}{2\pi \epsilon_0} (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

So, this is the expression of the electric field between the two cylinders.

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Which type of erosion and deposition is most common in coastal areas around the Gulf of Mexico
Alja [10]
<span> most common in coastal areas around the gulf of mexico is mostly by river

</span>
7 0
3 years ago
Read 2 more answers
Convert 141.2 kg to lbs and show all units and work​
zavuch27 [327]
Your answer is 311.29271 lbs
5 0
3 years ago
Other questions:
  • How did thomson’s findings revise dalton’s atomic theory??
    7·1 answer
  • A 0.15-kg ball is thrown into the air and rises to a height of 20.0 m. How much kinetic energy did the ball initially have?
    12·2 answers
  • Two charged spheres are 8.45 cm apart. They are moved, and the force on each of them is found to have been tripled. How far apar
    10·1 answer
  • The capacitor is now reconnected to the battery, and the plate separation is restored to d. A dielectric plate is slowly moved i
    14·1 answer
  • Write a paragraph of no less than five sentences explaining how Newton's First Law of Motion supports people's need to wear seat
    12·1 answer
  • Which list of observations is the best evidence of only a chemical change occurring?
    15·1 answer
  • Hdhehehbebehebehebebbebehe
    10·2 answers
  • Hellppppp&amp;/&amp;/&amp;/&amp;//&amp;/&amp;/&amp;/&amp;/&amp;&amp; will give brainiest
    14·1 answer
  • How did Millikan's oil drop experiment lead to quantum nature of electric charge?​
    10·1 answer
  • The frequency of new cases of a disorder within a given time period is referred to as:______
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!