<h2>Answer: 12.24m/s</h2>
According to <u>kinematics</u> this situation is described as a uniformly accelerated rectilinear motion. This means the acceleration while the car is in motion is constant.
Now, among the equations related to this type of motion we have the following that relates the velocity with the acceleration and the distance traveled:
(1)
Where:
is the Final Velocity of the car. We are told "the car comes to a stop after travelling", this means it is 0.
is the Initial Velocity, the value we want to find
is the constant acceleration of the car (the negative sign means the car is decelerating)
is the distance traveled by the car
Now, let's substitute the known values in equation (1) and find
:
(2)
(3)
Multiplying by -1 on both sides of the equation:
(4)
(5)
Finally:
>>>This is the Initial velocity of the car
Answer:
this is just a guess bc i only looked at it for 5 seconds but i think 150 m/s
Explanation:
We Know That
POTENTIAL ENERGY= MASS*g*HEIGHT
When the objects are lifted to same height then the object with heavier mass would have the highest potential energy
.
IV - Temperature
DV - Light intensity
Answer:
A ratio of equivalent units
Explanation:
A conversion factor is a ratio of equivalent units and depends on which units are to be converted.
For example we want to convert 275 [mm] to inches, so we have to find the right conversion factor to allow us to work that conversion.
275 [mm] = inches = ?
![275 [mm] * \frac{1in}{25.4mm} = 10.82 [in]](https://tex.z-dn.net/?f=275%20%5Bmm%5D%20%2A%20%5Cfrac%7B1in%7D%7B25.4mm%7D%20%3D%2010.82%20%5Bin%5D)
In this case the ratio is 1/25.4 = 0.039 [in/mm]