Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
The statement shows a case of rotational motion, in which the disc <em>decelerates</em> at <em>constant</em> rate.
i) The angular acceleration of the disc (
), in revolutions per square second, is found by the following kinematic formula:
(1)
Where:
- Initial angular speed, in revolutions per second.
- Final angular speed, in revolutions per second.
- Time, in seconds.
If we know that
,
y
, then the angular acceleration of the disc is:


The angular acceleration of the disc is
radians per square second.
ii) The number of rotations that the disk makes before it stops (
), in revolutions, is determined by the following formula:
(2)
If we know that
,
y
, then the number of rotations done by the disc is:

The disc makes 3.125 revolutions before it stops.
We kindly invite to check this question on rotational motion: brainly.com/question/23933120
#1.
<em>Car </em>1<em> weighs </em>300 kilograms<em> and is moving right at </em>3 meters per second (m/s)
#2.
Law of conservation of momentum
momentum before collorion = momentim after collosion
MV + mv = MV' + mv'
1500x25+ 1000x5
37500 + 15000
Exertion is not a good way to describe exercise but there is also alot more words to describe wrong ways for exercise