Answer:
8. 2.75·10^-4 s^-1
9. No, too much of the carbon-14 would have decayed for radiation to be detected.
Explanation:
8. The half-life of 42 minutes is 2520 seconds, so you have ...
1/2 = e^(-λt) = e^(-(2520 s)λ)
ln(1/2) = -(2520 s)λ
-ln(1/2)/(2520 s) = λ ≈ 2.75×10^-4 s^-1
___
9. Reference material on carbon-14 dating suggests the method is not useful for time periods greater than about 50,000 years. The half-life of C-14 is about 5730 years, so at 65 million years, about ...
6.5·10^7/5.73·10^3 ≈ 11344
half-lives will have passed. Whatever carbon 14 may have existed at the time will have decayed completely to nothing after that many half-lives.
The x-acis of a trajectory represents its C
Answer:
<h3>The answer is 36,400 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 1,300 kg
speed / velocity = 28 m/s
We have
momentum = 1,300 × 28
We have the final answer as
<h3>36,400 kgm/s</h3>
Hope this helps you
Explanation:
Half-life is the time taken for a radioactive material to decay to half its original composition:
Original mass = 48g
Half- life = 2hr
After four half lives;
Initially: 48g
First halving 24
Second halving 12
Third halving 6
Fourth halving 3
After second half life, we would have 12g
At fourth halving, we would have 3g
Answer:
50N
Explanation:
Given parameters:
Mass of the bike = 10kg
Acceleration = 5m/s²
Unknown:
Force on the bike = ?
Solution:
To solve this problem, we apply Newton's second law of motion.
Force = mass x acceleration
Force = 10 x 5 = 50N