Answer:
tympanic membrane (eardrum)
Explanation:
The sound waves spread through the air and reach the outer ear, into which they penetrate through the ear canal. In doing so, they stimulate the eardrum, which closes the inner end of the duct. By vibrating this membrane, the vibration of a chain of ossicles located in the middle ear is induced. These ossicles transmit their vibration to the oval window, which is a membranous structure that communicates the middle ear with the cochlea of the inner ear. When the oval membrane moves, it moves the liquid (perilymph) that fills one of the three cavities of the cochlea generating waves in it. These waves mechanically stimulate the sensory cells (hair cells) located in the organ of Corti, within the cochlea in the central cavity, the middle ramp. This cavity is filled with a liquid rich in K +, endolymph. The cells embedded in the endolymph, change their permeability to K + due to the movement of the cilia and respond by releasing a neurotransmitter that excites the nerve terminals, which initiate the auditory sensory pathway.
Answer:
A. the pressure decrease
Explanation:
pressure decreases when the surface area over which a force is applied increases. pressure increases when the surface area over which force is applied decreases.
Answer:
Explanation:
For calculating resistance of a conductor , the formula is
R = ρ l / A , ρ is specific resistance , l is length and A is cross sectional area of wire.
For first wire length is l₁ , area is A₁ resistance is R₁, for second resistance is R₂ , length is l₂ and area is A₂
Given , l₁ = 2l₂ , A₁ = 4A₂ , area is proportional to square of thickness.
R₁ / R₂ = I₁A₂ / I₂A₁
= 2l₂ x A₁ / 4 I₂A₁
= 1 / 2
2R₁ = R₂
Power = V² / R
Ratio of power = (V² / R₁) x (R₂ / V²)
= R₂ / R₁
= 2 .
Answer:
t = 1.02 s
Explanation:
The computation of the time required is shown below:
The package speed for belt is
= 3 - 1
= 2 m/s
Moreover, the decelerative force would be acted on the block i.e u.m.g
So, the decelerative produced
= 0.2 × 9.81
= 1.962 m/s^2
And, final velocity = 0
v = u - at
here
V = 0 = final velocity
u = 2 m/s
so,
0 = 2 - 1.962 × t
t = 1.02 s
Answer:
A
Explanation:
So a pulse is a part of a mechanical wave, and mechanical waves are energy transfer trough some medium, in this case a stretched spring. So the correct answer is (A) energy only. The pulse cant be transferred into mass.