Answer:
Efficiency = 10.2 %
Explanation:
Given the following data;
Mass = 70 kg
Height = 50 m
Velocity = 10 m/s
We know that acceleration due to gravity is equal to 9.8 m/s².
To find the efficiency of energy conversion from potential to kinetic;
First of all, we would determine the potential energy;
P.E = mgh
P.E = 70 * 9.8 * 50
P.E = 34300 J
For the kinetic energy;
K.E = ½mv²
K.E = ½ * 70 * 10²
K.E = 35 * 100
K.E = 3500
Therefore, Input energy, I = 34300 J
Output energy, O = 3500 J
Next, we find the efficiency;
Efficiency = O/I * 100
Substituting into the formula, we have;
Efficiency = 3500/34300 * 100
Efficiency = 0.1020 * 100
Efficiency = 10.2 %
Wavelength is measured in various units of distance (mm, cm, m, etc.). Frequency uses hertz, but that is not what the question is asking. Therefore, the answer is false.
11250J
Explanation:
Given parameters:
Mass of the person = 100kg
Velocity = 15m/s
Unknown:
Kinetic energy = ?
Solution:
The kinetic energy of a body is energy due to the motion of the body.
Kinetic energy =
m v²
m is the mass of the body
v is the velocity
Substituting the parameters:
K. E =
x 100 x 15² = 11250J
Learn more:
Kinetic energy brainly.com/question/6536722
#learnwithBrainly
Complete question:
A fireman of mass 80 kg slides down a pole. When he reaches the bottom, 4.2 m below his starting point, his speed is 2.2 m/s. By how much has thermal energy increased during his slide?
Answer:
The thermal energy increased by 3,099.2 J
Explanation:
Given;
mass of the fireman, m = 80 kg
initial position of the fireman, hi = 4.2 m
final speed, v = 2.2 m/s
The change in the thermal energy is calculated as;
ΔE + (K.Ef - K.Ei) + (Uf - Ui) = 0
where;
ΔE is the change in the thermal energy
K.Ef is the final kinetic energy
K.Ei is the initial kinetic energy
Uf is the final potential energy
Ui is the initial potential energy
