Answer:
Na(OH)4
Explanation:
Look at the charges and add them up
Na(OH) Na(OH)
Answer:
Explanation:
Increasing Volume while maintaining constant pressure requires a proportional increase in Temperature so the gas pressure will be maintained as constant.
Consider...
V₁ = V₁ V₂ = 4V₁
T₁ = T₁ T₂ = ?
Charles Law => T ∝ V at constant P ... that is, increasing temperature generates a proportional increase in volume to maintain constant pressure.
Empirical Charles Law Relation is ...
V₁/T₁ = V₂/T₂ => T₂ = T₁(V₂/V₁) = T₁(4V₁/V₁) = 4T₁
Increasing Volume of a gas by 4 times requires a 4 times increase in absolute temperature in order to maintain constant pressure.
A. Zn²⁺
<h3>Further explanation</h3>
Given
Cations of several elements
Required
The least to be reduced
Solution
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe²⁺-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Fe³⁺-Ag-Pt-Au </em>
The electrode which is easier to reduce than the hydrogen (H2) electrode has a positive sign (E red= +) and is located to the right of the voltaic series (right of H)
The electrode which is easier to oxidize than the hydrogen (H2) electrode and is difficult to experience reduction has a negative sign (E red= -) and is located to the left of the voltaic series (left of H)
Or you can look at the standard reduction potential value of the metals in the answer options, and the most negative reduction E° value which will be difficult to reduce.
The Zn metal is located far left of the other metals in the answer choices, so it is the most difficult to reduce
Answer:
2.61
Explanation:
pH+pOH=14, so sub in 11.39 for pOH, then subtract it over to get pH=2.61
if you have any questions, leave them in the comments and i will try to answer them, if this helped, pls give brainliest.