448 K is the final temperature of the water.
<h3>What is specific heat capacity?</h3>
The specific heat capacity is defined as the quantity of heat (J) absorbed per unit mass (kg) of the material when its temperature increases by 1 K (or 1 °C), and its units are J/(kg K) or J/(kg °C).
Given,
the mass of Na is 23 g
The volume of water = 293 cm3
Mass of water = 293 g
Total solution mass = 23 g + 293 g = 316 g
Specific heat capacity of water = 4.18 J/Kg
The equation relating mass, heat, specific heat capacity and temperature change is:
q = mcΔT
197 kJ = 316 g x 4.18 J/Kg x (
)
197 kJ = 316 g x 4.18 J/Kg x (
-298 K)
0.1491429956 x 1000 =
-298 K
149.1429956 + 298 = ![T_{finals}](https://tex.z-dn.net/?f=T_%7Bfinals%7D)
447.1429956 = ![T_{finals}](https://tex.z-dn.net/?f=T_%7Bfinals%7D)
448 K = ![T_{finals}](https://tex.z-dn.net/?f=T_%7Bfinals%7D)
Hence, 448 K is the final temperature of the water.
<h3>What does a high specific heat capacity mean?</h3>
A high specific heat capacity means that it can store a large amount of thermal energy for a small change in mass or temperature.
Learn more about specific heat capacity here:
brainly.com/question/2530523
#SPJ4
Where are the equations ..
Sorry....
The two half-reactions are...
Ag→Ag+
and...
NO3→NO
Let's start by balancing the first half-reaction...
Ag→Ag+
The amounts are already balanced; 1:1. The oxygens are balanced. So all that's left is to balance the charge...
Ag→Ag++e−
Now let's do the other equation... Amounts of nitrogen are balanced, so we first need to balance the oxygens...
NO3→NO
4H++NO3→NO+2H2O
Next, we need to balance charge...
4e−+4H++NO3→NO+2H2O
Now let's go ahead and rewrite each half-reaction after being balanced by themselves...
Ag→Ag++e−
4e−+4H++NO3→NO+2H2O
Now we need to multiply by some factor to get the electrons to cancel out. In this case, that factor is 4, which needs to be applied to the top half-reaction...
4(Ag→Ag++e−)=4Ag→4Ag++4e−
Then we combine this half-reaction with the second one above to get...
4Ag+4H++NO3→4Ag++NO+2H2O
D. the student's conclusion shows experimental bias
Answer:
1. 4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. 6 moles of Cl2
Explanation:
1. The balanced equation for the reaction. This is illustrated below:
4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. Determination of the number of mole of Cl2 produce when 4 moles of FeCl3 react with 4 moles. To obtain the number of mole of Cl2 produced, we must determine which reactant is the limiting reactant.
This is illustrated below:
From the balanced equation above,
4 moles of FeCl3 reacted with 3 moles of O2.
Since lesser amount of O2 (i.e 3 moles) than what was given (i.e 4 moles) is needed to react completely with 4 moles of FeCl3, therefore FeCl3 is the limiting reactant and O2 is the excess reactant.
Finally, we can obtain the number of mole Cl2 produced from the reaction as follow:
Note: the limiting reactant is used as it will produce the maximum yield of the reaction since all of it is used up in the reaction.
From the balanced equation above,
4 moles of FeCl3 will react to produced 6 moles of Cl2.