Answer:
it gains energy in a quantized amount
Explanation:
when we describe the energy of a particle as a quantized ,we mean that only certain values of energy are allowed....it can only gain the exact amount of energy needed to reach one of the higher energy levels
hope this helps :)
<span>Answer: 0.00 meters
Solution:
Step 1: Define displacement
DISPLACEMENT = a vector quantity that describes "linear or angular distance in a given direction between a body or point and a reference position."
Step 2: Understand the question
Assumption 1: Assume that when the ant moves 4.25 meters from its origin to its nest, it is moving in a positive direction (on a graph you would draw a line along the x-axis from its origin to +4.25).
Assumption 2: Assume that when the ant "turns around...back to the source of food", it is moving back in the negative direction (towards the origin).
Step 3: Analyze the question
What is the distance between where the ant originally started and where it ended its journey?
The ant started and ended its journey in the same place.
While it traveled a distance of 8.52 meters (2 * 4.26 = 8.52), it's displacement is actually 0.00 meters (4.26 + (-4.26) = 0.00)
Therefore, the answer is 0.00 meters</span>
Answer:
Equilibrium constant is 0.0873
Explanation:
For the reaction:
A + B ⇄ C
Equilibrium constant is defined as:
K = [C] / [A] [B]
concentrations in equilibrium of each reactant are:
[A] = 10 - X
[B] = 5 - X
[C] = 15 + X
If concentration in equilibrium of B is 9, X is:
[B] = 5 - X = 9 → <em>X = -4 </em>
Replacing:
[A] = 10 - (-4) = 14
[B] = 5 - (-4) = 9
[C] = 15 + (-4) = 11
K = 11 / (14×9) = 0.0873
Thus, <em>equilibrium constant is 0.0873</em>
Answer:
Regions of the Electromagnetic Spectrum
Wavelength (m)Frequency (Hz)Radio> 1 x 10-1< 3 x 109Microwave1 x 10-3 - 1 x 10-13 x 109 - 3 x 1011Infrared7 x 10-7 - 1 x 10-33 x 1011 - 4 x 1014Optical4 x 10-7 - 7 x 10-74 x 1014 - 7.5 x 1014