Answer:
<u>Inelastic collision:</u>
A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.
<u>Characteristics of an inelastic collision:</u>
- <em>the momentum of the system is conserved</em>
- <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>
<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>
<u>Elastic </u><u>collision</u><u>:</u>
A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.
<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>
- <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
- <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>
In everyday life, no collision is perfectly elastic.
__________________
ANSWER:
<u>Given examples:</u>
- Two cars colliding with each other form an example of inelastic collision.
<u>Reason:</u>
<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>
- A ball bouncing after colliding with a surface is an example of elastic collision
<u>Reason:</u>
<em>(a very less amount of kinetic energy is lost)</em>
Answer:
4.96 × 10⁵ Pa
Explanation:
F = mg

This force is evenly distributed on the three leg
radius, r = d/2
= 2.8 / 2
= 1.4 cm = 0.014 m
total cross sectional area of the three legs, A = 3*pi*r^2

Pressure due to weight,
P = Weight/A

P = 4.96 × 10⁵ Pa
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Answer: Because of the different wave speed from light and sound. Explanation: There is a major difference between the speed wave of light and sound, light travels at 186, 282 miles per second, and sound can travel at different speeds and its significantly slower so it is easier to measure it
Explanation:
Density of a material depends upon it's mass & volume.
You can calculate it by: Density = Mass / Volume
Hope this helps!