Answer:
The hollow cylinder rolled up the inclined plane by 1.91 m
Explanation:
From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

moment of inertia, I, of a hollow cylinder = ¹/₂mr²
substitute for I in the equation above;


given;
v₁ = 5.0 m/s
vf = 0
g = 9.8 m/s²

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m
iIn this case the mass of a body cannot be considered to be concentrated at the centre of mass of the body for the purpose of computing the rotational motion
Therefore the answer is False
Both hits the ground <u>at the same time</u> because they have <u>same vertical acceleration</u>
<u></u>
<h3>What is vertical acceleration?</h3>
A vertical acceleration is typically one for which the direction of the vector is vertically upward, usually aligned with and opposite to the gravity vector. But this is a descriptive term, not a rigorous or technical term. A car may accelerate along a road and that would generally be assumed to be a horizontal.
The vector perpendicular to this direction, as perhaps a suspension motion over a bump, would be described as vertical even if it is not strictly vertical.
Note that acceleration is defined as the rate of change of the velocity vector. But the gravitation vector, ‘g’, generally vertically downward, is often denoted by what acceleration a mass in free fall (absent air resistance) would experience, i.e. the relationship between mass and weight.
Learn more about vertical acceleration
brainly.com/question/19528199
#SPJ4