Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
The slight positive charges on the hydrogen atoms in water molecules attract the slight negative charges on the oxygen atoms of the other water molecules
The answer to this question is A
<span>
When air is warmed up, its molecules move faster and faster and as a
result they move further from each other. They still have the same
mass, but they now occupy a larger volume. This means that its density
is smaller.
The opposite when air is cooled off. The molecules slow down, get
closer together, occupy a smaller volume and therefore its density is
bigger.
When air is warmed up, it goes up. Once it's up there, is cools off and
goes back down. Near the heated surface the air gets warmed up again,
goes up, cools down, goes back down, and again and again.
that is called convection cells
</span>