Answer:
Molarity = 0.002 M
Explanation:
Given data:
Mass of calcium chloride = 0.321 g
Volume of water = 1.45 L
Molarity of solution = ?
Solution:
Molarity = number of moles / volume in litter.
We will calculate the number of moles of calcium chloride first.
Number of moles = mass/molar mass
Number of moles = 0.321 g/ 110.98 g/mol
Number of moles = 0.003 mol
Molarity:
Molarity = 0.003 mol / 1.45 L
Molarity = 0.002 M
<span>will metal do is when they ionize they have relatively high energies.These atoms have large diameters. The outer electrons are relatively far from the nucleus. Metals tend to lose electrons and form positive ions.</span>
Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Answer:
None of the given options
Explanation:
Let's go case by case:
A. No matter the volume, the concentration of Fe(NO₃)₃ (and thus of [Fe³⁺] as well) is 0.050 M.
B. We can calculate the moles of Fe₂(SO₄)₃:
- 0.020 M * 0.80 L = 0.016 mol Fe₂(SO₄)₃
Given that there are two Fe⁺³ moles per Fe₂(SO₄)₃ mol, in the solution we have 0.032 moles of Fe⁺³. With that information in mind we <u>can calculate [Fe⁺³]</u>:
- 0.032 mol Fe⁺³ / 0.80 L = 0.040 M
C. Analog to case A., the molar concentration of Fe⁺³ is 0.040 M.
D. Similar to cases A and C., [Fe⁺³] = 0.010 M.
Thus none of the given options would have [Fe⁺³] = 0.020 M.
Answer:
Upwelling is the natural process which brings cold, nutrient-rich water to the surface. A huge upwelling regularly occurs off the coast of Peru, which enjoys a large fishing industry as a result. Upwelling is a process in which currents bring deep, cold water to the surface of the ocean.
Explanation:
good luck