Electricity grids will produce surplus power
Answer:
Option 2= Glucose
Explanation:
Cell membrane is made up of two phospholipid layers and each contain phosphate head and fatty acid or lipid tails. the head is present between the outer and inner boundaries and tail is present in between. The small non- polar molecules can pass the membrane through simple diffusion. This lipid tail restrict the passage of polar molecules including water soluble substances like glucose. However, transmembranes are present that allow the molecules to inter that are blocked by the tails.
Facilitated diffusion:
it is a type of diffusion in which caries protein without using the cellular energy shuttle the molecules to the cell membrane. Glucose is bind on the carrier protein ,change the shape and transport it from one to another side of membrane. In order to absorb the glucose red blood cells use this kind of diffusion.
Primary active transport:
The cells that are present along small intestine use this type of transport to pump the glucose inside the cell. The primary active transport require energy to transport the glucose inside.
Secondary active transport:
It is another method of transport of glucose into the cell. This method can not use ATP but it is based on concentration gradient of the sodium that provide electro chemical energy for the glucose transport.
The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL
The answer is, All of the above
Electrolytes are substances that produce ions when they dissolve in water.
What are electrolytes?
When some substances are dissolved in water, they undergo physical or chemical changes, creating ions in solution. These substances form an important class of compounds called electrolytes. Substances that do not release ions when dissolved are called non-electrolytes. A substance is said to be a strong electrolyte if the physical or chemical process that produces ions is inherently 100% efficient (all dissolved compounds produce ions). A solute is said to be a weak electrolyte if only a relatively small portion of the solute undergoes ion production processes.
By measuring the electrical conductivity of aqueous solutions containing substances, substances can be identified as strong, weak, or non-electrolyte. To conduct electricity, a substance must contain free-moving charged species. The best known is the conduction of electricity through metal wires. In this case, the mobile charged unit is the electron.
Therefore, Electrolytes are substances that produce ions when they dissolve in water.
To know more about electrolyte, visit:
brainly.com/question/17089766
#SPJ4