To get the percent yield, we will use this formula:
((Actual Yield)/(Theoretical Yield)) * 100%
Values given: actual yield is 220.0 g
theoretical yield is 275.6 g
Now, let us substitute the values given.
(220.0 grams)/(275.6 grams) = 0.7983
Then, to get the percentage, multiply the quotient by 100.
0.7983 (100) = 79.83%
Among the choices, the most plausible answer is 79.8%
<span>
</span>
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
Note down the formula below

Mass of the compound

Mass % of Hydrogen:-



Mass % of Oxygen:-



The answer is-
is octahedral in electronic and molecular geometry with 6 Fluorine atoms bonded to central atom S.
Lewis structures are the diagrams in which the valence electrons of the atoms of a compound are arranged around the atoms showing the bonding between the atom and the lone pair of electrons existing in the molecule.
Determine the molecular geometry of
.
- Valence Shell Electron Pair Repulsion theory is commonly known as VSEPR theory and it helps to predict the geometry of molecules.
- According to this theory, electrons are arranged around the central atom of the molecule in such a way that there is minimum electrostatic repulsion between these electrons.
- Now, calculate the total number of valence electrons in
.

Valence electrons of S = 6
Valence electrons of F = 7
Thus, the valence electrons in
are-

- The Lewis structure of
is - (Image attached). - In the structure, the number of atoms bonded to central atom (S) = 6.
- Number of non-bonding electron pairs on the central atom = 0 (as all the valence electrons are bonded to F).
- Electronic geometry in case of 6 bond pairs is octahedral.
- Molecular geometry us also octahedral with bond angles 90°.
- Central atom is sp3d2 hybridised.
is a non-polar molecule.
To learn more about Lewis structures visit:
brainly.com/question/12307841?referrer=searchResults
#SPJ4
Answer is :c) Gas(hydrogen sulfide)