Answer:
we cant see the digram bro
Explanation:
Kinetic energy as she hits the water is 3300 joule.
To find the answer, we need to know about the Newton's equation of motion.
<h3>What's the Newton's equation of motion to determine the final velocity?</h3>
- The final velocity is determined as
V²=U²+2aS
- V= final velocity, U= initial velocity, a= acceleration and S= distance
<h3>What's the final velocity of the driver falling from 3.10m with initial velocity of 6.10m/s?</h3>
- Here, a= 9.8m/s², U= 6.10m/s and S= 3.10m
- So, V²= 6.1²+2×9.8×3.10= 98
- V= √98= 10m/s
<h3>What's the kinetic energy of the driver when touches the water?</h3>
Kinetic energy= 1/2×mass×velocity²
= 1/2 × 66 × 10²
= 3300J
Thus, we can conclude that the kinetic energy of the driver is 3300 Joule.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
The fractional Intensity
= 0.0146
Given:
wavelength of the light, 
slit and screen separation difference, D = 130 cm = 1.3 m
distance of the point from the center of the principal maximum, y = 4.10 mm = 0.041 m
slit width, d = 0.420 mm = 
Solution:
To calculate the fractional intensity, we use the given formula:
(1)
For very small angle:
(2)
where


Using eqn (2):

Now, using eqn (1):
