Answer:

Explanation:
I am assuming that we have to balance this equation. On the left side, we have one Fe, 2 H, 2 Cl, and 1 S. On the right side, we have 1 Fe, 1 H, 1 Cl, and 1 S. Adding a 2 as a coefficient in front of the HCl on the right side will make 2 H and 2 Cl instead, balancing the overall equation.
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)
<h3>What is spectrometric method?</h3>
- A technique called spectrophotometry uses light intensity measurements as a beam of light travels through a sample solution to determine how much a chemical compound absorbs light.
- Every chemical either absorbs or transmits light across a specific spectrum of wavelengths, according to the fundamental principle.
- There are two main techniques used among the various forms of spectrophotometry:
- ultraviolet-visible range spectrophotometry, which examines the reflectance of certain spectra,
- and absorption spectrophotometry, which examines the absorption of radiation and particular spectra of light.
- Applications of spectrophotometry are useful for determining how well gases, liquids, and solids transmit, reflect, and absorb light.
Learn more about spectrometric method here:
brainly.com/question/18339003
#SPJ4
Answer:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
The coefficients are: 1, 6, 3, 2
Explanation:
__Fe₂(SO₄)₃ + __KOH —> __K₂SO₄ + __Fe(OH)₃
To determine the correct coefficients, we shall balance the equation. This can be obtained as follow:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + Fe(OH)₃
There are 2 atoms of Fe on the left side and 1 atom on the right side. It can be balance by writing 2 before Fe(OH)₃ as shown below:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of OH on the right side and 1 atom on the left side. It can be balance by writing 6 before KOH as shown below:
Fe₂(SO₄)₃ + 6KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of K on the left side and 2 atoms on the right side. It can be balance by writing 3 before K₂SO₄ as shown below:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
Now, the equation is balanced.
Therefore, the coefficients are: 1, 6, 3, 2