Explanation:
A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms
Answer:
They conducted it from earth
Explanation:
There had never been anything capable of observing it from space launched at that time because Sputnik wasn't even launched
Covalent compounds
All the best
Answer: Volume of gas in the stomach, V = 0.0318L or 31.8mL
Explanation:
The number of moles of oxygen will remain constant even though the liquid oxygen will undergo a change of state to gaseous inside the person's stomach due to an increase in temperature.
<em>Number of moles of oxygen gas = mass/molar mass</em>
molar mass of oxygen gas = 32 g/mol
mass of oxygen gas = density * volume
mass of oxygen gas = 1.149 g/ml * 0.035 ml
mass of oxygen gas = 0.040215 g
Number of moles of oxygen gas = 0.0402 g/(32 g/mol)
Number of moles of oxygen gas = 0.00125 moles
<em>Using the ideal gas equation, PV=nRT</em>
where P = 1.0 atm, V = ?, n = 0.00125 moles, R = 0.082 L*atm/K*mol, T = (37 + 273)K = 310 K
<em>V = nRT/P</em>
V = (0.00125moles) * (0.082 L*atm/K*mol) * (310 K) / 1 atm
V = 0.0318L or 31.8mL
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>