When CH₄ is burnt in excess O₂ following products are formed,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
According to equation 1 mole of CH₄ (16 g) reacts with 2 moles of O₂ to produce 1 mole of CO₂ and 2 moles of H₂O. Hence the products are,
1 mole of CO₂ and 2 moles of H₂O
Converting 1 mole CO₂ to grams;
As,
Mass = Moles × M.mass
Mass = 1 mol × 44 g.mol⁻¹
Mass = 40 g of CO₂
Converting 2 moles of H₂O to grams,
Mass = 2 mol × 18 g.mol⁻¹
Mass = 36 g of H₂O
Total grams of products;
Mass of CO₂ = 44 g
+ Mass of H₂O = 36 g
-------------
Total = 80 g of Product
Result:
80 grams of product is formed when 16 grams of CH₄ is burnt in excess of Oxygen.
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
70.33 L is the volume of 10 moles of a gas at 300 K held at a pressure of 3.5 atm.
<h3>What is volume?</h3>
Volume is the percentage of a liquid, solid, or gas's three-dimensional space that it occupies.
Liters, cubic metres, gallons, millilitres, teaspoons, and ounces are some of the more popular units used to express volume, though there are many others.
We will use ideal gas law to find the volume
PV = nRT
Can also be written as
V = (nRT)/P
Where,
P = pressure
V = volume
n = amount of substance
R = ideal gas constant
T = temperature
Here, we have given
P = 3.5 atm
V = to find
n = 10 moles
R = 0.08206 L⋅atm/K⋅mol
T = 300k
Lets substitute the values
V = (10 × 0.08206 × 300)/3.5
V = 70.33 L
Learn more about volume
brainly.com/question/463363
#SPJ10