It is talking about how from a different perspective things look different.
That picture should help.
A. because I had this question yesterday.
If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that, the total momentum of an isolated system is constant.
The downward velocity of thes gases is calculated as follows;
v1(m1 + m2) = v2(m2)
305(1000 + 25) = v2(25)
312,625 = 25v2
v2 = 312,625/25
v2 = 12,505 m/s
Thus, If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
Learn more about linear momentum here: brainly.com/question/7538238
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>