1)Kenetic Energy is defined as energy which a body possesses by virtue of being in motion. 2)KE) is KE = 0.5 x mv2. Here m stands for mass, the measure of how much matter is in an object, and v stands for the velocity of the object, or the rate at which the object changes its position..
And I hope this helped :)
Explanation:
It is given that,
Diameter of the circular loop, d = 1.5 cm
Radius of the circular loop, r = 0.0075 m
Magnetic field, 
(A) We need to find the current in the loop. The magnetic field in a circular loop is given by :



I = 32.22 A
(b) The magnetic field on a current carrying wire is given by :



r = 0.00238 m

Hence, this is the required solution.
Answer:
a. when the acceleration of the objects become negative
<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 
