Answer:
2.1844 m/s
Explanation:
The principle of conservation of momentum can be applied here.
when two objects interact, the total momentum remains the same provided no external forces are acting.
Consider the whole system , gun and bullet. as an isolated system, so the net momentum is constant. In particular before firing the gun, the net momentum is zero. The conservation of momentum,

assume the bullet goes to right side and the gravitational acceleration =10 
so now the weight of the rifle=

this is a negative velocity to the right side. that means the rifle recoils to the left side
The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
The force of the racket affects the ball's motion because it changes the momentum of the ball.
<h3>Impulse received by the ball</h3>
The impulse received by the ball through the racket affects the motion because it changes the momentum of the ball.
The ball which is initially at rest, will gain momentum after been hit with the racket.
J = ΔP = Ft
where;
- J is the impulse received by the ball
- ΔP is change in momentum of the ball
- F is the applied force
- t is the time of action
Thus, the force of the racket affects the ball's motion because it changes the momentum of the ball.
Learn more about impulse here: brainly.com/question/25700778