Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²

The mass of water moving around on Earth’s surface causes the amount of gravitational force.
<span>Convert angstroms to nm for atom diameter
2.18/10=.218 nm. Divide diameter by length width and height.
63.6/.218=292
74.2/.218=327
275/.218=1261
Multiply these to get volume of atoms
120,037,500
Convert atoms to moles using Avogadro number
120,037,500/6.02*10^23=2*10^-16 moles</span>
Relative density, or specific gravity, is the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest; for gases, the reference is air at room temperature.