Answer:
See explanation.
Explanation:
1. There are 8 electrons. Elements that end with 2p orbitals are in the 2nd period (aka row) of the periodic table. Elements that have 4 electrons in 2p are in the 16th group (aka column) (column 16 may also be referred to as 6A) of the periodic table. So looking at row 2, column 16, we can see that the first diagram is of O, Oxygen.
2. 8 electrons. This is the same diagram as the one above.
3. 13 electrons. Elements ending with 3p are in period 3. Elements with 1 valence electron in a p orbital are in group 13 (aka group 3A).
4. 7 electrons. We already know 2p is period 2. 3 valence electrons in a p orbital means that it is in group 15/group 5A.
I did not write the answers for #3 and 4 but they can be easily found on a periodic table with the info I gave.
Answer:
some bonds are broken and new ones are formed. Now you are ready to learn more about those bonds. Chemical bonds are attractions between atoms. They are simply attractive forces (between the + nucleus of one atom and the - electrons of a neighboring atom) that hold groups of atoms together and make them function as a unit.
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
Answer:
It's important that we understand how the climate is changing so that we can prepare for the future. Studying the climate helps us predict how much rain the next winter might bring, or how far sea levels will rise due to warmer sea temperatures.
Weather is the state of the atmosphere at any given time and place.
Climate is the long-term average of the weather in a given place
Answer is: specific gravity of glucose is 1,02.
d(glucose) = 1,02 g/ml.
d(water) = 1,00 g/ml.
Specific gravity of glucose = density of glucose ÷ density of water.
Specific gravity of glucose = 1,02 g/ml ÷ 1,00 g/ml.
Specific gravity of glucose = 1,02.
Specific gravity<span> is the ratio of the </span>density<span> of a substance (in this case glucose) to the density of a reference substance (water).</span>