Since liquid CO2 cannot exist at pressures lower than 5.11 atm, the triple point is defined as 56.6 °C and 5.11 atm.
Are CO2 liquids explosive?
Although it can impair judgement at high doses, carbon dioxide is neither poisonous nor combustible. Asphyxiation is typically seen as the primary risk associated with CO2. The Boiling Liquid Expanding Vapour Explosion, however, is a serious risk connected to compressed CO2 (BLEVE)
What PSI does CO2 turn into liquid at?
Only at pressures more than 5.1 atm does liquid carbon dioxide form; the triple point of carbon dioxide is approximately 518 kPa at 56.6 °C. Depending on the pressure, the liquid's boiling point ranges from -70°F to +88°F. The expansion ratio when vaporised at 60°F is 535:1. CO2 is a gas or liquid.
Toknw more about Liquid CO2 visit:
https://brainly.in/question/16890479
#SPJ4
Answer:You didn't provide examples
Explanation: Groundwater can cause erosion under the surface as it moves through the soil. During the movement an acid is formed which what causes erosion and deposition.
Hope that helps
Answer:
Pb₂O₄
Explanation:
The given species are:
Pb⁴⁺ O²⁻
Now, to solve this problem, we use the combining powers which corresponds to the number of electrons usually lost or gained or shared by atoms during the course of a chemical combination.
Pb⁴⁺ O²⁻
Combining power 4 2
Exchange of valencies 2 4
Now the molecular formula is Pb₂O₄
The question is incomplete. Complete question is attached below.
..........................................................................................................................
Correct Answer: <em>Option 1) 2-pentene</em>
Reason:
Following are the IUPAC rules for naming the compound
1) Select the
longest carbon chain. In present case longest carbon chain has 5 carbon atom. Hence, it is a pentane derivative.
2) In case of alkene,
replace 'e' of alkane by 'ene'3) Give
lowest number to function group. In present case, it is double bond.
Applying above rules, the IUPAC name of compound is
2-pentene
Answer:
C
Explanation:
The higher the period the higher the activity of an element, therefore, since iodine is in period 6 and bromine is in period 5, the described reaction is not possible due to the fact that bromine is less active