Answer:
there are three significant digits.
Explanation:
Thus, 21.8, 0.283 and 567 all have three significant digits. 2. Zeros appearing between non-zero digits are significant. Thus, 505 and 0.206 have three significant digits, while 50,005 has five significant digits. (from google)
The amount of heat required to convert H₂O to steam is : 382.62 kJ
<u>Given data :</u>
Mass of liquid water ( m ) = 150 g
Temperature of liquid water = 43.5°C
Temperature of steam = 130°C
<h3 /><h3>Determine the amount of heat required </h3>
The amount of heat required = ∑ q1 + q2 + q3 ----- ( 1 )
where ;
q1 = heat required to change Temperature of water from 43.5°C to 100°C . q2 = heat required to change liquid water at 100°C to steam at 100°C
q3 = heat required to change temperature of steam at 100°C to 130°C
M* S
*ΔT
= 150 * 4.18 * ( 100 - 43.5 )
= 35425.5 J
moles * ΔHvap
= (150 / 18 )* 40.67 * 1000
= 338916.67 J
M * S
* ΔT
= 150 * 1.84 * ( 130 -100 )
= 8280 J
Back to equation ( 1 )
Amount of heat required = 35425.5 + 338916.67 + 8280 = 382622.17 J
≈ 382.62 kJ
Hence we can conclude that The amount of heat required to convert H₂O to steam is : 382.62 kJ.
Learn more about Specific heat of water : brainly.com/question/16559442
Reproducibility is a major principle of the scientific method. It means that a result obtained by an experiment or observational study should be achieved again with a high degree of agreement when the study is replicated with the same methodology by different researchers.
Let us say that R is the major enantiomer, while
S is the minor enantiomer, therefore the formula for enantiomeric excess (ee)
is:
ee = (R – S) * 100%
Let us further say that the fraction of R is x (R
= x), and therefore fraction of S is 1 – x (S = 1 – x), therefore:
75 = (x – (1 – x)) * 100
75 = 100 x – 100 + 100 x
200 x = 175
x = 0.875
Summary of answers:
R = major enantiomer = 0.875 or 87.5%
<span>S = minor enantiomer = (1 – 0.875) = 0.125 or
12.5%</span>