Answer:
2.97 × 10¹³ g
Explanation:
First, we have to calculate the biomass the is burned. We can establish the following relations:
- 2.47 acre = 10,000 m²
- 10 kg of C occupy an area of 1 m²
- 50% of the biomass is burned
The biomass burned in the site of 400,000 acre is:

Let's consider the combustion of carbon.
C(s) + O₂(g) ⇒ CO₂(g)
We can establish the following relations:
- The molar mass of C is 12.01 g/mol
- 1 mole of C produces 1 mole of CO₂
- The molar mass of CO₂ is 44.01 g/mol
The mass of produced is CO₂:

The pH of the solution : 12
<h3>Further explanation</h3>
Reaction
HCOOH + NaOH ⇒ HCOONa + H₂O
mol HCOOH =

mol NaOH =

Mol NaOH>mol HCOOH ⇒ at the end of the reaction there will be a strong base remains from mol NaOH, so that the pH is determined from [OH⁻]
ICE method :
HCOOH + NaOH ⇒ HCOONa + H₂O
4 5
4 4 4 4
0 1 1 1
Concentration of [OH⁻] from NaOH :

pOH=-log[OH⁻]
pOH=-log 10⁻²=2
pH+pOH=14
pH=14-2=12
Answer:
Electromagnetic force, Strong nuclear force, and Weak nuclear force.
Explanation:
Forces acting
electromagnetic force, strong nuclear force, and weak nuclear force. The electromagnetic force keeps the electrons attached to the atom. The strong nuclear force keeps the protons and neutrons together in the nucleus. The weak nuclear force controls how the atom decays.
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>