Answer:
Explanation:
We know that the formula for acceleration is given by:
, where v = Final velocity
u= Initial velocity
Given : The driver of a car traveling 110 km/h slams on the brakes so that the car undergoes a constant acceleration.
i.e. u= 110 km/h
[∵ 1 km= 100 meters and 1 hour = 3600 seconds]
v= 0 m/s ( At brake , final velocity becomes 0)
t=4.5 seconds
Substitute all the values in the formula , we get

Hence, the average acceleration of the car during braking is
.
Answer:
Sub stratul exterior lichid-metal al miezului Pământului se află o bilă solidă de fier și aliaj de nichel cu aproximativ 1,60 km în diametru.
Explanation:
Answer:
I would say all of the above.
Explanation:
Look below for more examples
The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
Answer : The correct option is, (D) 278 K
Explanation :
We are given temperature
.
Now the conversion factor used for the temperature is,

where, K is kelvin and
is Celsius.
Now put the value of temperature, we get

Therefore, the temperature 278 K is equal to the 