1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
3 years ago
13

Calculate the kinetic energy of a particle with a

Physics
1 answer:
topjm [15]3 years ago
6 0
K=1/2×mv²
m=3.34×10^-27
V=2.89×10^5
k=1/2 × 3.34×10^-27 ×  (2.89×10^5)²= 1/2 ×3.34×10^-27 × 8.3521×10^10=
1/2 × 27.9 × 10^-17=  13.95 × 10^-17 joule
You might be interested in
Which one of the statements below is true about mechanical waves?
TEA [102]
They require a medium to travel through
5 0
2 years ago
Can someone please help me out with this quiz will give brainiest and thanks to people
Virty [35]

Answer:

Energy transferred = 28.8 Joules.

1. Energy transferred = 144 Joules.

2. The unit of potential difference, volts can also be described as Joules per Coulombs.

3. Current, I = 6.945 Amperes.  

Explanation:

<u>Part A.</u>

Given the following data;

Current, I = 1.2A

Time, t = 2 minutes

Potential difference, V = 12 volts.

To find the energy transfered;

Energy transferred = charge moved * potential difference

E = Q * V

Substituting into the equation, we have;

Energy transferred = (1.2 * 2) * 12

Energy transferred = 2.4 * 12

Energy transferred = 28.8 Joules.

<u>Part B.</u>

1. <em><u>Given the following data;</u></em>

Charge, Q = 24C

Potential difference = 6V

To find the energy transferred;

E = Q * V

Substituting into the equation, we have;

E = 24 * 6

E = 144 Joules.

2. Since we know that, Energy transferred = charge moved * potential difference

Potential \; difference = \frac {Energy \; transferred}{Charged \; moved}

The units of energy is Joules while the unit of the quantity of charge moved is Coulomb.

Therefore, the unit of potential difference becomes Joules per Coulomb.

3. <em><u>Given the following data;</u></em>

Potential difference = 18V

Energy transferred = 500J

Time, t = 4 minutes.

To find the current;

E = Q * V

Substituting into the equation, we have;

500 = Q*18

Q = 500/18

Q = 27.78C

But, Charge moved (Q) = current (I) * time (t)

Current, I = Q/t

Substituting into the equation, we have;

Current, I = 27.78/4

Current, I = 6.945 Amperes..

3 0
3 years ago
A human being can be electrocuted if a current as small as 51.0 ma passes near the heart. an electrician working with sweaty han
boyakko [2]

The fatal current is 51 mA = 0.051 Ampere.

The resistance is 2,050Ω .

Voltage = (current) x (resistance)

            =  (0.051 Ampere) x (2,050 Ω)  =  104.6 volts .

==================

This is what the arithmetic says IF the information in the question
is correct.

I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as  15 mA  through the
heart can be fatal, not  51 mA .

If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as  31 volts !

The voltage at the wall-outlets in your house is  120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
6 0
3 years ago
A third point charge q3 is now positioned halfway between q1 and q2. The net force on q2 now has a magnitude of F2,net = 4.444 N
Dmitriy789 [7]

Answer:

The value of third charge is 0.8μC.

Explanation:

Given that.

Magnitude of net force=4.444 N

According to figure,

Suppose, First charge = 2.4 μC

Second charge = 6.2 μC

Distance r₁ = 9.8 cm

Distance r₂ = 2.1 cm

We need to calculate the value of r

Using Pythagorean theorem

r=\sqrt{(r_{1})^2+(r_{2})^2}

Put the value into the formula

r=\sqrt{(9.8)^2+(2.1)^2}

r=10.02\ cm

We need to calculate the force

Using formula of force

F_{12}=\dfrac{kq_{1}q_{2}}{(r)^2}

Force F₁₂,

F_{12}=\dfrac{9\times10^{9}\times2.4\times10^{-6}\times6.2\times10^{-6}}{(10.02\times10^{-2})^2}

F_{12}=13.33\ N

F_{21}=-13.33\ N

Force F₂₃,

F_{23}=\dfrac{9\times10^{9}\times6.2\times10^{-6}\times q_{3}}{(10.02)^2}

We need to calculate the value of third charge

F_{net}=F_{21}+F_{23}

4.444=-13.33+\dfrac{9\times10^{9}\times6.2\times10^{-6}\times q_{3}}{(5.01)^2}

q_{3}=\dfrac{(4.444+13.33)\times(5.01\times10^{-2})^2}{9\times10^{9}\times6.2\times10^{-6}}

q_{3}=7.99\times10^{-7}\ C

q_{3}=0.8\times10^{-6}\ C

Hence, The value of third charge is 0.8μC.

4 0
2 years ago
The forces exerted on an object are shown. (3 points)
Alex_Xolod [135]

Answer:

<em>F equals 3 N and the object remains stationary</em>. (second option in the list)

Explanation:

For sure to cancel acting forces, F must be 3N pointing up. But with regards to the object stationary or not, the question is tricky. We could have a ZERO net force applied, and the object moving at constant speed, which could still verify Newton's Laws. But considering the first answer option that refers to vertical motion upward where the object could be gaining potential energy, the most accurate response is that the force F has to be 3 N pointing up to make the object in equilibrium, and no motion in the vertical axis.

7 0
3 years ago
Other questions:
  • A converging lens brings rays of light together at a focal point. The bending of light rays is the result ofA. A combination of
    8·1 answer
  • one type of wave used to transmit a signal is a ultraviolet wave. infrared wave. radio wave. x-ray wave.
    7·2 answers
  • What does the negative sign in F = –kx mean?
    11·1 answer
  • Examine the resistor network. The answers to each of the questions can be either "none" or the numbers of one or more resistors.
    7·1 answer
  • 27N-(u)(14kg)(9.8m/s^2)=0
    12·1 answer
  • The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 1783
    14·1 answer
  • PLEASE HELP 20 POINTS AND BRAINLIEST.
    12·2 answers
  • A boy throws a stone vertically in the air with an initial speed of 40m/sec.At the instant the stone is thrown,a monkey at the t
    12·1 answer
  • Which statement describes a surface wave?
    8·1 answer
  • What is an isotope?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!