Answer:
94.1 m
Explanation:
From Coulombs law,
F = Gm1m2/r²................... Equation 1
where F = force, m1 = first mass, m2 = second mass, G = universal constant, r = distance of separation.
Make r the subject of the equation,
r = √(Gm1m2/F)................. Equation 2
Given: F = 7×10² N, m1 = 15×10⁷ kg, m2 = 62×10⁷ kg,
Constant: G = 6.67×10⁻¹¹ Nm²/kg²
Substitute into equation 2
r = √( 6.67×10⁻¹¹×15×10⁷×62×10⁷/7×10²)
r √(886.16×10)
r √(88.616×10²)
r = 9.41×10
r = 94.1 m.
Hence the distance of separation = 94.1 m
Both the object and earth pulls each other towards itself but since the mass and pulling force of objects are very small the pulling force of objects are negligible.
The approximate height of the tsunami in Alaska in 1958 is 1720ft
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.