Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849
The amount of charge that passes per unit time is called <em>electric current</em> .
Current has dimensions of [Charge] / [Time] .
It's measured and described in units of ' Ampere ' .
1 Ampere means 1 Coulomb of charge passing a point every second.
Answer:
The magnet produces an electric current in the wire
Explanation:
The answer is true about the cabins in commercial airliners that require pressurization.
<h3>Why are the cabins of commercial airplanes pressurized?</h3>
Airplanes are pressurized because the air is very thin at the high altitude where they fly. The passenger jet has a cruising altitude of about 30,000 - 40,000 feet. At this altitude or height, humans can't breathe very well and our body gets less amount of oxygen. Most aircraft cabins are pressurized to an altitude about 8,000 feet. This is called cabin altitude. Aircraft pilots have access to the control's mode of a cabin pressure control system and if needed it can command the cabin to depressurize.
So we can conclude that cabins in commercial airliners require pressurization because of the greater pressure of the surrounding environment.
Learn more about pressure here: brainly.com/question/28012687
#SPJ1
We can confirm that the difference between a comet and an asteroid lies in their compositions and physical characteristics <u>derived from those compositions</u>.
As stated in the question, the main difference between an asteroid and a comet is their compositions, meaning the materials from which they form.
Asteroids are rocky objects which a heavy metal composition, while comets tend to be made of dust, ice, and <em><u>some </u></em>rocky material. Some extra differences include:
- Comets reflect a steady amount of light (because of their ice composition)
- Asteroids will <em><u>reflect light at random intervals due to some metals that may be present on their surface</u></em>
- Comets tend to have a tail made of water from the melting ice when reflecting sunlight.
Therefore, we can confirm that the main difference between asteroids and comets is their compositions, which lead to distinct physical characteristics.
To learn more visit:
brainly.com/question/1333558?referrer=searchResults