Answer:
The minimum speed the car must have at the top of the loop to not fall = 35 m/s
Explanation:
Anywhere else on the loop, the speed needed to keep the car in the loop is obtained from the force that keeps the body in circular motion around the loop which has to just match the force of gravity on the car. (Given that frictional force = 0)
mv²/r = mg
v² = gr = 9.8 × 25 = 245
v = 15.65 m/s
But at the top, the change in kinetic energy of the car must match the potential energy at the very top of the loop-the-loop
Change in kinetic energy = potential energy at the top
Change in kinetic energy = (mv₂² - mv₁²)/2
v₁ = velocity required to stay in the loop anywhere else = 15.65 m/s
v₂ = minimum velocity the car must have at the top of the loop to not fall
And potential energy at the top of the loop = mgh (where h = the diameter of the loop)
(mv₂² - mv₁²)/2 = mgh
(v₂² - v₁²) = 2gh
(v₂² - (15.65)²) = 2×9.8×50
v₂² - 245 = 980
v₂² = 1225
v₂ = 35 m/s
Hence, the minimum speed the car must have at the top of the loop to not fall = 35 m/s
Answer:
A.build a nest
Explanation:
A heron is a bird and it needs a lace to store eggs also i took the test
Answer: Weight only.
Explanation: Mass is a measure of the amount of matter in an object. Weight is a measure of the gravitational force exerted on the material in a gravitational field. Mass and weight are proportional to each other, with the acceleration due to gravity as the proportionality constant.
If a rock is transported from the moon to the earth, the mass is constant for the object but the weight will depends on the locations of the object. The gravitational acceleration would change because the radius and mass of the Moon is different from the Earth.
Thus, the object (rock) has <em>mass, m</em> both on the surface of the Earth and the surface of the Moon; but it will <em>weight</em> much less on the surface of the Moon as the Moon's surface gravity is 1/6 of the Earth.
Answer:
F = [MLT⁻²]
Explanation:
Force = ma
m (mass) = [M]
a (acceleration) = [LT⁻²]
F(force) = m x a = [MLT⁻²]